Part Number Hot Search : 
LC160 FCW101Z 20100 M4S5HW 1N4693D 2SD768K DS3906 MB3110A
Product Description
Full Text Search
 

To Download IRG7PH30K10DPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 97403
IRG7PH30K10DPBF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features
* * * * * * * * * Low VCE (ON) Trench IGBT Technology Low switching losses 10 S short circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package
C
VCES = 1200V IC = 16A, TC = 100C
G E
tSC 10s, TJ(max) = 150C
n-channel
C
VCE(on) typ. = 2.05V
Benefits
* High Efficiency in a wide range of applications * Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses * Rugged transient Performance for increased reliability * Excellent Current sharing in parallel operation
E C G TO-247AC
G Gate
C Collector
E Emitter
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C INOMINAL ICM ILM IF @ TC = 25C IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Nominal Current Pulse Collector Current, Vge = 15V Clamped Inductive Load Current, Vge = 20V Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1 N*m)
Max.
1200 30 16 9.0 27 36 30 16 36 30 180 71 -55 to +150
Units
V
c
A
d
Continuous Gate-to-Emitter Voltage
V W
C
Thermal Resistance
RJC (IGBT) RJC (Diode) RCS RJA
f Thermal Resistance Junction-to-Case-(each Diode) f
Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
Parameter
Min.
--- --- --- ---
Typ.
--- --- 0.24 40
Max.
0.70 1.44 --- ---
Units
C/W
1
www.irf.com
08/14/09
IRG7PH30K10DPBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
V(BR)CES
V(BR)CES/TJ
Min.
1200 -- -- -- 5.0 -- -- -- -- -- -- --
Typ.
-- 1.11 2.05 2.56 -- -15 6.2 1.0 400 2.0 2.1 --
Max. Units
-- -- 2.35 -- 7.5 -- -- 25 -- 3.0 -- 100 nA V V
Conditions
VGE = 0V, IC = 250A
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
e
Ref.Fig CT6 CT6 5,6,7 9,10,11 9,10 11,12
VCE(on) VGE(th)
VGE(th)/TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
V/C VGE = 0V, IC = 1mA (25C-150C) IC = 9.0A, VGE = 15V, TJ = 25C V IC = 9.0A, VGE = 15V, TJ = 150C V VCE = VGE, IC = 400A mV/C VCE = VGE, IC = 400A (25C - 150C) S VCE = 50V, IC = 9.0A, PW = 80s A VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150C IF = 9.0A IF = 9.0A, TJ = 150C VGE = 30V
gfe ICES VFM IGES
8
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
Min.
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Typ.
45 8.7 20 530 380 910 14 24 110 38 810 680 1490 11 23 130 260 1070 63 26
Max. Units
68 13 30 760 600 1360 31 41 130 56 -- -- -- -- -- -- -- -- -- -- pF VGE = 0V VCC = 30V ns J ns J nC IC = 9.0A VGE = 15V VCC = 600V
Conditions
Ref.Fig 24 CT1
IC = 9.0A, VCC = 600V, VGE = 15V RG = 22, L = 1.0mH, LS = 150nH, TJ = 25C
Energy losses include tail & diode reverse recovery
CT4
IC = 9.0A, VCC = 600V, VGE = 15V RG = 22, L = 1.0mH, LS = 150nH, TJ = 25C
CT4
IC = 9.0A, VCC = 600V, VGE=15V RG=22, L=1.0mH, LS=150nH, TJ = 150C IC = 9.0A, VCC = 600V, VGE = 15V RG = 22, L = 1.0mH, LS = 150nH TJ = 150C
eA
13,15 CT4 WF1, WF2 14,16 CT4 WF1 WF2 23
Energy losses include tail & diode reverse recovery
f = 1.0Mhz TJ = 150C, IC = 36A VCC = 960V, Vp =1200V Rg = 22, VGE = +20V to 0V
4 CT2
FULL SQUARE 10 -- -- -- -- 710 140 12 -- -- -- -- s J ns A
TJ = 150C, VCC = 600V, Vp =1200V Rg = 22, VGE = +15V to 0V TJ = 150C VCC = 600V, IF = 9.0A VGE = 15V, Rg = 20, L =1.0mH, Ls = 150nH
22, CT3 WF4 17,18,19 20,21
WF3
Notes: VCC = 80% (VCES), VGE = 20V, L = 36H, RG = 33. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. R is measured at TJ of approximately 90C.
2
www.irf.com
IRG7PH30K10DPBF
30 25
200
150
20 15 10 5 0 25 50 75 100 125 150
Ptot (W)
IC (A)
100
50
0 0 20 40 60 80 100 120 140 160 T C (C)
T C (C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
100
Fig. 2 - Power Dissipation vs. Case Temperature
100
10sec 10 100sec
IC (A)
IC (A)
1000 10000
1msec
10
1 Tc = 25C Tj = 150C Single Pulse 0.1 1 10
DC
1
100 VCE (V)
10
100 VCE (V)
1000
10000
Fig. 3 - Forward SOA TC = 25C, TJ 150C; VGE =15V
50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 50
Fig. 4 - Reverse Bias SOA TJ = 150C; VGE = 20V
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
40
40
ICE (A)
ICE (A)
30
30
20
20
10
10
0 0 2 4 6 8 10 VCE (V)
0 0 2 4 6 8 10 VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s
www.irf.com
3
IRG7PH30K10DPBF
50 50 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 -40C 25C 150C
ICE (A)
30
30
20
IF (A)
20 10 0 10 0.0
10
0 0 2 4 6 8 VCE (V)
1.0
2.0
3.0
4.0
5.0
VF (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150C; tp = 80s
12 10 8
VCE (V)
Fig. 8 - Typ. Diode Forward Characteristics tp = 80s
12 10 8
VCE (V)
6 4 2 0 5 10 VGE (V)
ICE = 4.5A ICE = 9.0A ICE = 18A
6 4 2 0
ICE = 4.5A ICE = 9.0A ICE = 18A
15
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40C
12 10 8
VCE (V)
ICE, Collector-to-Emitter Current (A)
40
Fig. 10 - Typical VCE vs. VGE TJ = 25C
30
6 4 2 0 5 10 VGE (V)
ICE = 4.5A ICE = 9.0A ICE = 18A
20 T J = 25C T J = 150C 10
0
15
20
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
Fig. 11 - Typical VCE vs. VGE TJ = 150C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V
4
www.irf.com
IRG7PH30K10DPBF
2000 1000 tF
Swiching Time (ns)
1600 EON
Energy (J)
100
tdOFF
1200
800 EOFF 400
tR 10 tdON
0 5 10 IC (A) 15 20
1 0 5 10 IC (A) 15 20
Fig. 13 - Typ. Energy Loss vs. IC TJ = 150C; L = 1.0mH; VCE = 600V, RG = 22; VGE = 15V
1600 1400 EON 1200
Fig. 14 - Typ. Switching Time vs. IC TJ = 150C; L = 1.0mH; VCE = 600V, RG = 22; VGE = 15V
1000 tF
Swiching Time (ns)
100
Energy (J)
td OFF tR
1000 800 600 400 0 20 40 60 80 100 RG () EOFF
10 tdON
1 0 20 40 60 80 100 RG ()
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150C; L = 1.0mH; VCE = 600V, ICE = 9.0A; VGE = 15V
18 16 14 RG = 5.0
Fig. 16 - Typ. Switching Time vs. RG TJ = 150C; L = 1.0mH; VCE = 600V, ICE = 9.0A; VGE = 15V
18
16 RG = 10
IRR (A)
12 RG = 20 10 8 6 4 6 8 10 12 IF (A) 14 16 18 20 RG = 47
IRR (A)
14
12
10
8 0 10 20 30 40 50 RG ()
Fig. 17 - Typ. Diode IRR vs. IF TJ = 150C
Fig. 18 - Typ. Diode IRR vs. RG TJ = 150C
www.irf.com
5
IRG7PH30K10DPBF
18
3000
16
2500
QRR (nC)
18A 20
10
5.0
IRR (A)
14
2000
47
12
9.0A 1500
10
8 0 100 200 diF /dt (A/s) 300 400
1000 0 100
4.5A 200 diF /dt (A/s) 300 400
Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 600V; VGE = 15V; IF = 9.0A; TJ = 150C
1200 RG = 5.0 1000 RG = 10 RG = 20
Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 600V; VGE = 15V; TJ = 150C
48 60
40 Tsc
50
Energy (J)
800
Time (s)
RG = 47
32 Isc 24
40
Current (A)
30
600
16
20
400 0 5 10 IF (A) 15 20
8 8 10 12 VGE (V) 14 16
10
Fig. 21 - Typ. Diode ERR vs. IF TJ = 150C
10000
VGE, Gate-to-Emitter Voltage (V)
16 14 12 10 8 6 4 2 0
Fig. 22 - VGE vs. Short Circuit Time VCC = 600V; TC = 150C
VCES = 600V VCES = 400V
1000
Capacitance (pF)
Cies
100 Coes 10 Cres
1 0 100 200 300 400 500 VCE (V)
0
10
20
30
40
50
Q G, Total Gate Charge (nC)
Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE ICE = 9.0A; L = 600H
6
www.irf.com
IRG7PH30K10DPBF
1 D = 0.50
Thermal Response ( Z thJC )
0.20 0.1 0.10 0.05 0.02 0.01
J J 1 R1 R1 2 R2 R2 R3 R3 3 R4 R4 C 1 2 3 4 4
Ri (C/W)
0.0107 0.1816 0.3180 0.1910
0.000005 0.000099 0.001305 0.009113
i (sec)
0.01
Ci= i/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1
1E-005
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20
0.1
0.10 0.05 0.02 0.01
J J 1 1
R1 R1 2
R2 R2
R3 R3 3
R4 R4 C 4
Ri (C/W)
0.0103 0.4761 0.5749 0.3390
0.000005 0.000451 0.001910 0.012847
i (sec)
2
3
4
0.01 SINGLE PULSE ( THERMAL RESPONSE )
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRG7PH30K10DPBF
L
L
0
DUT 1K
VCC
80 V +
-
DUT Rg
VCC
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp / DUT L
4X DC DUT
Rg
VCC
-5V DUT / DRIVER VCC
SCSOA
Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit
C force
R=
VCC ICM
100K D1 22K
C sense
DUT
Rg
VCC
G force
DUT
0.0075F
E sense
E force
Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - BVCES Filter Circuit
8
www.irf.com
IRG7PH30K10DPBF
900 800 700 600 500 VCE (V) 400 300 200 100 0 -100 -5 0
Eoff Loss 5% V CE 5% ICE 90% ICE
18 tf 16 14 12
900 800 700 600 500 VCE (V)
ICE (A)
90% test current TEST CURRENT
45 40 tr 35 30 25 20 15
current
10 8 6 4 2 0 -2 10
400 300
200 10% test 100 0 -100 -1.8 -0.8
Eon Loss 5% V CE
10 5 0 -5 0.2 1.2 2.2 3.2 time (s)
5 time(s)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150C using Fig. CT.4
100 0 -100 -200 -300 VF (V) -400 -500 -600 -700 -800 -900 -2.50 0.00
Peak IRR 10% Peak IRR
12.5 10 QRR tRR 7.5 5
800 700 600 500 Vce (V)
IF (A)
80 VCE ICE 70 60 50 Ice (A)
9
2.5 0 -2.5 -5 -7.5 -10 -12.5 5.00
400 300 200 100 0 -100 -5 0 5 Time (uS)
Fig. WF4 - Typ. S.C. Waveform @ TJ = 150C using Fig. CT.3
40 30 20 10 0 -10
10
2.50
time (S)
Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150C using Fig. CT.4
www.irf.com
ICE (A)
IRG7PH30K10DPBF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
@Y6HQG@) UCDTADTA6IADSAQ@"A XDUCA6TT@H7GA GPUA8P9@A$%$& 6TT@H7G@9APIAXXA"$A! DIAUC@A6TT@H7GAGDI@AACA Ir)AAQAAvAhriyAyvrAvv vqvphrAAGrhqArrA DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S
,5)3(
A "$C $%AAAAAAAAAAA$&
96U@A8P9@ @6SA A2A! X@@FA"$ GDI@AC
TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/2009
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRG7PH30K10DPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X